Find the surface area of the torus shown below, with radii r and R.

Find The Surface Area Of The Torus Shown Below With Radii R And R.

The main objective of this question is to find the surface area of the given torus with the radii represented by r and R.

This question uses the concept of the torus. A torus is basically the surface revolution generated as a result of rotating the circle in the three-dimensional space.

Expert Answer

In this question, we will aim to find the surface area of the torus whose radius of the tube is r and the distance to the center is R.

We know that torus generated as a result of rotating circle is:

(x  R)2 + y2 = r2 , R>r>0

The top half is:

f(x) = (r2  (x  R2)12 , R  r  x  R + r

Thus:

x [x0,x0 + Δx]

Δs = (Δx)2 + (f(xo + Δx)  f(xo))2

ds = 1 + (f (x))2

Then:

dA = 2πxds = 2πx1 + (f(x))2dx

f(x) = 12(r2  (x  R)2)12 2(R  x)

= R  xf(x)

= 1 + (f(x))2 = xf(x)

Thus:

2A = 4π2Rr

Numerical Answer:

The surface area of the torus is 4π2Rr.

Example

Find the surface area of the torus whose radii are r and r.

In this question, we will aim to find the surface area of the torus whose radius of the tube is r and the distance to the center r.

Torus generated as a result of rotating circle is:

(x  r)2 + y2 = r2 , r>r>0

The top half is:

f(x) = (r2  (x  r2)12 , r  r  x  r + r

Thus by simplifying, we get:

x [x0,x0 + Δx]

Δs = (Δx)2 + (f(xo + Δx)  f(xo))2

ds = 1 + (f (x))2

Then:

dA = 2πxds = 2πx1 + (f(x))2dx

f(x) = 12(r2  (x  R)2)12 2(r  x)

= r  xf(x)

= 1 + (f(x))2 = xf(x)

By simplifying we get the surface area of the torus as:

2A = 4π2rr

Hence, the surface area of the torus is space4π2rr.

Previous Question < > Next Question