- Home
- >
- Determinant of a matrix – Explanation & Examples
JUMP TO TOPIC
Determinant of a Matrix – Explanation & Examples

What is the Determinant of a Matrix?
The determinant of a matrix is a single constant value (or, a scalar value) that tells us certain things about the matrix. The value of the determinant results from certain operations that we do with the elements of a matrix.There are $ 3 $ ways we use to denote the determinant of a matrix. Check the picture below:
How to Find the Determinant of a Matrix
So how do we find the determinant of matrices?First of all, we can only calculate the determinant for square matrices!There aren’t any determinant for non-square matrices.Now, there is a formula (algorithm) to find the determinant of any square matrix. That is out of the scope of this lesson. Rather, we will look at finding determinants of $ 2 \times 2 $ matrices and $ 3 \times 3 $ matrices. The formula can be extended to find the determinant of $ 4 \times 4 $ matrices, but that is too complicated and messy!Below, we look at the formula for $ 2 \times 2 $ matrices and $ 3 \times 3 $ matrices and see how to calculate the determinant of such matrices.Matrix Determinant Formula
We will find the determinant of $ 2 \times 2 $ and $ 3 \times 3 $ matrices in this section.Determinant of a 2 x 2 Matrix
Consider the $ 2 \times 2 $ matrix shown below:$ A = \begin{bmatrix} { a } & { b } \\ { c } & { d } \end {bmatrix} $The formula for the determinant of a $ 2 \times 2 $ matrix is shown below:$ det( A ) = | A | = \begin{vmatrix} { a } & { b } \\ { c } & { d } \end {vmatrix} = ad – bc $Note: We used $ 3 $ different notations to denote the determinant of this matrixTo find the determinant of a $ 2 \times 2 $ matrix, we take the product of the top-left entry and the bottom-right entry and subtract from it the product of top-right entry and the bottom-left entry.Let’s calculate the determinant of matrix $ B $ shown below:$ B = \begin{bmatrix} { 1 } & { 3 } \\ { – 3 } & { 2 } \end {bmatrix} $Using the formula just learned, we can find the determinant:$ det( B ) = | B | = \begin{vmatrix} { 1 } & { 3 } \\ { – 3 } & { 2 } \end {vmatrix} $$ = ( 1 ) ( 2 ) – ( 3 ) ( – 3 ) $$ = 2 + 9 $$ = 11 $The determinant of matrix $ B $ is calculated to be $ 11 $.Determinant of a 3 x 3 Matrix
Now that we have learned how to find the determinant of a $ 2 \times 2 $ matrix, it will become handy when finding the determinant of a $ 3 \times 3 $ matrix. Consider Matrix $ B $ shown below:$ B = \begin{bmatrix} { a } & { b } & { c } \\ { d } & { e } & { f } \\ { g } & { h } & { i } \end {bmatrix} $The formula for the determinant of a $ 3 \times 3 $ matrix is shown below:$ det( B ) = | B | = a \begin{vmatrix} { e } & { f } \\ { h } & { i } \end{vmatrix} – b \begin{vmatrix} { d } & { f } \\ { g } & { i } \end{vmatrix} + c \begin{vmatrix} { d } & { e } \\ { g } & { h } \end{vmatrix} $
- We take $ a $ and multiply it with the determinant of the $ 2 \times 2 $ matrix that is not in the row and column of $ a $
- Then, we subtract the product of $ b $ and the determinant of the $ 2 \times 2 $ matrix that is not in the row and column of $ b $
- Lastly, we add the product of $ c $ and the determinant of the $ 2 \times 2 $ matrix that is not in the row and column of $ c $
Example 1
Given $ C = \begin{bmatrix} { – 9 } & { – 2 } \\ { 3 } & { – 1 } \end {bmatrix} $, find $ | C | $. SolutionWe have to find the determinant of the $ 2 \times 2 $ matrix shown above. Let’s use the formula and find the determinant. Shown below:$ det( C ) = | C | = \begin{vmatrix} { – 9 } & { – 2 } \\ { 3 } & { – 1 } \end {vmatrix} $$ = ( – 9 ) ( – 1 ) – ( – 2 ) ( 3 ) $$ = 9 + 6 $$ = 15 $Example 2
Find $ x $ given $ \begin{vmatrix} { 1 } & { x } \\ { 8 } & { 2 } \end {vmatrix} = 34 $. SolutionWe are already given the determinant and have to find an element, $ x $. Let’s put it into the formula and solve for $ x $:$ \begin{vmatrix} { 1 } & { x } \\ { 8 } & { 2 } \end {vmatrix} = 34 $$ ( 1 ) ( 2 ) – ( x ) ( 8 ) = 34 $$ 2 – 8x = 34 $$ -8x = 34 – 2 $$ – 8x = 32 $$ x = – 4 $Example 3
Calculate the determinant of Matrix $ D $ shown below:$ D = \begin{bmatrix} { 6 } & { 2 } \\ { – 12 } & { – 4 } \end {bmatrix} $Solution We will use the formula to calculate the determinant of Matrix $ D $. Shown below:$ det( D ) = | D | = \begin{vmatrix} { 6 } & { 2 } \\ { – 12 } & { – 4 } \end {vmatrix} $$ = ( 6 ) ( – 4 ) – ( 2 ) ( – 12 ) $$ = -24 + 24 $$ = 0 $The determinant of this matrix is $ 0 $!This is a special type of matrix. It is a non-invertible matrix and is known as a singular matrix. To learn more, check here.Practice Questions
- Find the determinant of the matrix shown below: $ A = \begin{bmatrix} – 5 & – 10 \\ 3 & – 1 \end{bmatrix} $
- Find $ y $ given $ \begin{vmatrix} { 1 } & { 3 } & { – 1 } \\ { 5 } & { 0 } & { y } \\ { – 1 } & { 2 } & { 3 } \end {vmatrix} = – 60 $
Answers
- Matrix $ A $, a $ 2 \times 2 $ matrix, is given. We need to find the determinant of it. We do so by applying the formula. Process is shown below:$ det( A ) = | A | = \begin{vmatrix} { – 5 } & { – 10 } \\ { 3 } & { – 1 } \end {vmatrix} $$ = ( – 5 ) ( – 1 ) – ( – 10 ) ( 3 ) $$ = 5 + 30 $$ = 35 $
- We are already given the determinant and have to find an element, $ y $. Let’s put it into the formula for the determinant of a $ 3 \times 3 $ matrix and solve for $ y $:$ \begin{vmatrix} { 1 } & { 3 } & { – 1 } \\ { 5 } & { 0 } & { y } \\ { – 1 } & { 2 } & { 3 } \end {vmatrix} = – 60 $ $ 1 [ ( 0 )( 3 ) – ( y )( 2 ) ] – 3 [ ( 5 )( 3 ) – ( y )( – 1 ) ] + (-1) [ ( 5 )( 2 ) – ( 0 )( – 1 ) ] = – 60$ $ 1 [- 2y ] – 3 [ 15 + y ] + (-1) [ 10 ] = – 60 $ $ – 2y – 45 – 3y – 10 = – 60 $ $ – 5y – 55 = – 60 $ $ – 5y = – 60 + 55 $ $ – 5y = – 5 $ $ y = 1 $