Coffee is draining from a conical filter into a cylindrical coffee pot of radius 4 inches at the rate of 20 cubic inches per minute. How fast is the level in the pot rising when the coffee in the cone is 5 inches deep. How fast is the level in the cone falling then?

Coffee Is Draining From A Conical Filter

The aim of this question is to use the geometric formulas of volume of different shapes for the solution of word problems.

The volume of the cone-shaped body is given by:

\[ V \ = \ \dfrac{ 1 }{ 3 } \pi r^2 h \]

Where h is the depth of the cone.

The volume of the cylindrical-shaped body is given by:

\[ V \ = \ \pi r^2 h \]

Where h is the depth of the coffee pot.

Expert Answer

Part (a) – The volume of the cylindrical-shaped coffee pot is given by the following formula:

\[ V \ = \ \pi r^2 h \]

Differentiating both sides:

\[ \dfrac{ dV }{ dt } \ = \ \pi r^2 \dfrac{ dh }{ dt } \]

Since the rate of rise of volume of the cylindrical coffee pot $ \dfrac{ dV }{ dt } $ has to be same as the rate of fall of volume in the conical filter, we can say that:

\[ \dfrac{ dV }{ dt } \ = \ 20 \ in^3/min \]

Also, given that $ r \ = \ 4 \ inches $, the above equation becomes:

\[ 10 \ = \ \pi ( 4 )^2 \dfrac{ dh }{ dt } \]

\[ \Rightarrow 20 \ = \ 16 \pi \dfrac{ dh }{ dt } \]

\[ \Rightarrow \dfrac{ dh }{ dt } \ = \ \dfrac{ 20 }{ 16 \pi } \ = \ \dfrac{ 5 }{ 4 \pi } \]

Part (b) – Given that the radius r’ of the cone is 3 inches at the maximum height h’ of 6 inches, we can deduce following relationship between r’ and h’:

\[ \dfrac{ r’ }{ h’ } \ = \ \dfrac{ 3 }{ 6 } \ = \ \dfrac{ 1 }{ 2 } \]

\[ \Rightarrow r’ \ = \ \dfrac{ 1 }{ 2 } h’ \]

Differentiating both sides:

\[ \Rightarrow \dfrac{ r’ }{ t } \ = \ \dfrac{ 1 }{ 2 } \dfrac{ h’ }{ t } \]

The volume of the cone-shaped conical filter is given by the following formula:

\[ V \ = \ \dfrac{ 1 }{ 3 } \pi r’^2 h’ \]

Substituting value of r’:

\[ V \ = \ \dfrac{ 1 }{ 3 } \pi \bigg ( \dfrac{ 1 }{ 2 } h’ \bigg )^2 h’ \]

\[ \Rightarrow V’ \ = \ \dfrac{ 1 }{ 12 } \pi h’^3 \]

Differentiating both sides:

\[ \dfrac{ V’ }{ t } \ = \ \dfrac{ 1 }{ 12 } \pi \dfrac{ d }{ dt } ( h’^3 ) \]

\[ \Rightarrow \dfrac{ V’ }{ t } \ = \ \dfrac{ 1 }{ 12 } \pi ( 3 h’^2 \dfrac{ dh’ }{ dt } ) \]

\[ \Rightarrow \dfrac{ V’ }{ t } \ = \ \dfrac{ 1 }{ 4 } \pi  h’^2 \dfrac{ dh’ }{ dt } \]

Substituting value of $ \dfrac{ V’ }{ dt } \ = \ 20 $ and $ h’ \ = \ 5 inches $:

\[ 20 \ = \ \dfrac{ 1 }{ 4 } \pi  ( 5 )^2 \dfrac{ dh’ }{ dt } \]

\[ \Rightarrow 20 \ = \ \dfrac{ 25 }{ 4 } \pi \dfrac{ dh’ }{ dt } \]

\[ \Rightarrow \dfrac{ dh’ }{ dt } \ = \ \dfrac{ 20 \times 4 }{ 25 \pi } \ = \ \dfrac{ 16 }{ 5 \pi }\]

Numerical Result:

\[ \dfrac{ dh }{ dt } \ = \ \dfrac{ 5 }{ 4 \pi } \]

\[ \dfrac{ dh’ }{ dt } \ = \ \dfrac{ 16 }{ 5 \pi } \]

Example

For the same scenario given above, what is the rate of rise of the level when the level in the conical filter is 3 inches?

Recall:

\[ \dfrac{ V’ }{ t } \ = \ \dfrac{ 1 }{ 4 } \pi  h’^2 \dfrac{ dh’ }{ dt } \]

Substituting values:

\[ 20 \ = \ \dfrac{ 1 }{ 4 } \pi  ( 3 )^2 \dfrac{ dh’ }{ dt } \]

\[ \Rightarrow 20 \ = \ \dfrac{ 9 }{ 4 } \pi \dfrac{ dh’ }{ dt } \]

\[ \Rightarrow \dfrac{ dh’ }{ dt } \ = \ \dfrac{ 20 \times 4 }{ 9 \pi } \ = \ \dfrac{ 80 }{ 9 \pi }\]

Previous Question < > Next Question